

Design of experiments using spring probe parameters for optimized socket bandwidth

Ila Pal, Ironwood Electronics, ila@ironwoodelectronics.com

Agenda

- Problem definition
- Seven principles of interconnect design for optimized insertion loss
- Key input variables and output variable
- Design of experiments
- Experimental results
- Analysis of results
- Optimized insertion loss model
- Confirmation run to verify model
- Conclusions

Problem Definition

- There is no established relation between critical spring probe parameters and their influence on signal integrity.
- There is no baseline reference and a starting point for spring probe design which is an everyday need due to emerging new application requirements.

Seven principles of interconnect design for optimized insertion loss

Eric Bogatin says:

- 1. Match characteristic impedance of socket to 50 Ohms
- 2. Keep the impedance constant through socket
- 3. Optimize (minimize) pad stack up capacitance
- 4. Keep socket short
- 5. Dielectric loss of socket not critical
- 6. Conductor loss of socket not critical
- 7. Contact resistance of socket not critical

Key input variables and output variable

- Input variable
 - Spring pin length (1mm to 4mm)
 - Spring pin diameter (0.25mm to 0.35mm)
 - Ground pattern
 - C1 (G-S-G)
 - C2 G-\$-G G-\$-G Ġ
- Output variable
 - Bandwidth (GHz) at -1dB Insertion loss

Design of experiments

Study Type	Factorial
Runs	8
Initial Design	2 Level Factorial
Blocks	No Blocks
Center Points	0
Design Model	3FI

			Low	High	Low	High		
Name	Units	Туре	Actual	Actual	Coded	Coded	Mean	Std. Dev.
Diameter	mm	Numeric	0.25	0.35	-1	1	0.3	0.05
Length	mm	Numeric	1	4	-1	1	2.5	1.5
Ground		Categoric	C 1	C2			Levels:	2

Design of experiments

Standard Order	Run Order	Block	Diameter (mm)	Length (mm)	Ground pattern	Bandwidth (GHz)
7	1	Dlock 1	0.25	4	<u></u>	
/	L	BIOCK T	0.25	4	C2	
4	2	Block 1	0.35	4	C1	
3	3	Block 1	0.25	4	C1	
8	4	Block 1	0.35	4	C2	
5	5	Block 1	0.25	1	C2	
6	6	Block 1	0.35	1	C2	
2	7	Block 1	0.35	1	C1	
1	8	Block 1	0.25	1	C1	

Experimental results

Standard Order	Run Order	Block	Diameter (mm)	Length (mm)	Ground pattern	Bandwidth (GHz)
_	_			_		
7	1	Block 1	0.25	4	C2	14
4	2	Block 1	0.35	4	C1	5.6
3	3	Block 1	0.25	4	C1	13.9
8	4	Block 1	0.35	4	C2	4
5	5	Block 1	0.25	1	C2	31
6	6	Block 1	0.35	1	C2	14.8
2	7	Block 1	0.35	1	C1	19
1	8	Block 1	0.25	1	C1	33

Rank

Response	Bandwidth					
ANOVA for selected factorial model						
Source	Sum of Squares	df	Mean Square	F Value	p-value, Prob > F	
Model	748.5425	2	374.27125	62.78402181	0.0003	significant
A-Diameter	294.03125	1	294.03125	49.3237576	0.0009	
B-Length	454.51125	1	454.51125	76.24428601	0.0003	
Residual	29.80625	5	5.96125			
Cor Total	778.34875	7				

The Model F-value of 62.78 implies the model is significant. There is only a 0.03% chance that a "Model F-Value" this large could occur due to noise.

Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, B are significant model terms.

Values greater than 0.1000 indicate the model terms are not significant.

Std. Dev.	2.4415671	R-Squared	0.961705791
Mean	16.9125	Adj R-Squared	0.946388107

Optimized insertion loss model

Bandwidth = +65.85000 -121.25000 * Diameter -5.02500 * Length

Model valid within the following limits

Diameter: 0.25mm to 0.35mm Length: 1mm to 4mm

A: Diameter

Optimization of results

To maximize Bandwidth:

5 Solutions found						
Number	Diameter	Length	Ground*	Bandwidth	Desirability	
1	0.25	1	C2	30.51248841	0.914223738	Selected
2	0.25	1	C1	30.51248775	0.914223716	
3	0.25	1.03	C2	30.36742561	0.909221573	
4	0.25	1.03	C1	30.34746318	0.908533213	
5	0.25	1.18	C2	29.6219383	0.883515114	
*Has no effe	ect on optimizatio	n results.				

Optimization of results

A: Diameter

Confirmation run to verify model

S-Parameter Magnitude in dB

Optimization of results

To maximize Bandwidth and Length:

9 Solutions	s found					
Number	Diameter	Length	Ground*	Bandwidth	Desirability	
1	0.25	3.64	C1	17.25805757	0.63400549	Selected
2	0.25	3.64	C2	17.25776855	0.634005466	
3	0.25	3.65	C2	17.19991881	0.63399974	
4	0.25	3.62	C1	17.34746791	0.633989528	
5	0.25	3.66	C1	17.13879092	0.633979894	
6	0.25	3.66	C2	17.13074513	0.633977077	
7	0.25	3.61	C1	17.41399089	0.633960073	
8	0.25	3.75	C2	16.70416448	0.633454994	
9	0.25	3.1	C2	19.96789457	0.620599198	
*Has no ef	fect on optimizat	ion results.				

Optimization of results

A: Diameter

Confirmation run to verify model

S-Parameter Magnitude in dB

Conclusions

- Key input variables of spring probe and output variable are identified
- A set of experiments were designed using Design Expert Statistical Software
- Experiments were conducted and results were analyzed using Design Expert Statistical Software
- A statistical model was developed that relates spring probe parameters to optimized signal bandwidth.
- A confirmation experiment was performed to verify the validity of model.

